-
517В новых номерах авторитетных научных журналов вышло сразу несколько статей, посвященных микробиому. Кроме того, на этой неделе вы сможете прочитать об активном применении технологии CRISPR в Китае, влиянии ограничения потребления метионина на опухолевый рост, эволюции трансмиссивной венерической опухоли собак (СTVT) и успехах, достигнутых в разработке вакцины против респираторно-синцитиального вируса.
-
Правда ли, что потомки Чингисхана живут по всей планете? Можно ли быть уверенным, что ученые нашли расстрелянную семью Романовых? Можно ли по генетическому материалу определить внешность человека? На эти и другие вопросы вы найдете ответы в книге Елены Клещенко «ДНК и ее человек. Краткая история ДНК-идентификации», вышедшей в издательстве Альпина нон-фикшн.
-
Уже давно известно, что системы CRISPR/Cas, защищающие бактерий и архей от вирусов, иногда обнаруживают в составе бактериофагов и транспозонов. Как правило, такие системы CRISPR/Cas неполные и не кодируют нуклеаз. Каково же функциональное предназначение этих «демо-версий» CRISPR/Cas? Недавно на страницах Nature американские исследователи сообщили, что бактериальные Tn7-подобные транспозоны используют свои системы CRISPR/Cas для РНК-направленной интеграции в геном. Более того, ученые предполагают, что транспозоны, которые содержат систему CRISPR/Cas и интегрируются в то место ДНК, которое комплементарно направляющей РНК, могут стать новым инструментом для редактирования генома. Наша статья посвящена этому интереснейшему открытию.
-
Эта неделя пополнила научное сообщество сразу несколькими исследованиями, связанными с секвенированием ДНК и РНК одиночных клеток. А еще сразу в двух статьях нового выпуска Science опубликованы работы, которые рассказывают о тонкостях липидного обмена в организме. Кроме этого, ученые составили карту стволовых клеток гидры, нашли молекулярного виновника врожденного порока сердца, выявили генов-«победителей» в составе раковых клеток и заставили CRISPR работать на РНК.
-
Список необычных пептидов, которые синтезируют разнообразные живые организмы (особенно бактерии), постоянно пополняется: это и кольцевые пептиды, и пептиды, содержащие D-аминокислоты, и так называемые лассо-пептиды, у которых через N-концевое макролактамное кольцо «продета» линейная C-концевая часть молекулы. За превращение обычного линейного пептида, синтезируемого рибосомами, в лассо-пептид, отвечает синтетаза лассо-пептида, которая состоит из двух белковых субъединиц: B и C (или B1, B2 и C, если в состав субъединицы B входят два отдельных полипептида). Белок B1 отвечает за распознавание лидерной последовательности будущего лассо-пептида, фермент B2 лидерную последовательность отрезает, а белок С формирует макролактамное кольцо на N-конце лассо-пептида. Однако все детали этого трехступенчатого процесса остаются неясными. Исследователи из Центра наук о жизни Сколковского института науки и технологий совместно с японскими коллегами получили кристаллическую структуру белка B1 термофильной актинобактерии Thermobifida fusca в комплексе с соответствующим лидерным пептидом и с помощью мутационного анализа выявили, какие именно остатки фермента B1 и самого пептида играют решающую роль в его созревании. Тонкостям синтеза необычных лассо-пептидов и посвящена наша новость.
-
Многие считают краснуху легкой детской болезнью, и напрасно: во-первых, она иногда дает серьезные осложнения, а во-вторых, грозит развитием множества патологий новорожденного, если его мать заболеет в первом триместре беременности. В этой статье спецпроекта «Вакцинация» мы расскажем вам историю разработки вакцины против краснухи, опишем принцип ее действия и объясним, кому и когда нужно сделать прививку, чтобы избежать трагических последствий болезни.
-
531В новых номерах авторитетных научных журналов вы сможете прочесть о том, что австралопитеки регулярно голодали (не от хорошей жизни), о том, как давно появилась глотка, подходящая для питания молоком, о том, насколько консервативны гендерспецифические различия в экспрессии генов, и о новом способе синтеза белка, когда часть его синтезируется на рибосомах, а часть — нет.
-
Статья на конкурс «био/мол/текст»: Наверняка почти все, кто следит за последними новостями биологии и медицины, наслышаны о курьезном случае, произошедшем под занавес 2018 года в Поднебесной. Вокруг эксперимента, о котором пойдет речь в статье, до сих пор ведутся активные споры. Это событие вызвало огромный общественный резонанс из-за нарушения всех существующих норм биоэтики. Возможно, вы и сами приняли чью-то позицию, оправдывая деятельность ученого-«виновника» или, наоборот, осуждая её. Давайте разберемся в этом сюжете поподробнее, взвесим все «за» и «против» и тем самым получим пищу для новых размышлений на эту тему.
-
Типично летние научные новости путешествуют по всему миру — от просторов Ближнего Востока и трущоб Бангладеша до болот Калифорнии. Например, мы узнаем всю правду о предках коров, определим оптимальную диету для восстановления микрофлоры кишечника и поймем, зачем простейшие обитатели болот двигаются в такт. А новости из мира медицины познакомят нас с неизвестными клетками печени, спрятанным в глубинах мозга пространственным центром и железными мускулами из пластика.
-
Археи, несмотря на то, что не имеют оформленного ядра, по очень многим признакам гораздо больше похожи на эукариот, чем на бактерий. В частности, их геномная ДНК упакована и компактизирована с помощью гистонов, как у эукариот. Однако гистоны эти весьма своеобразны (как, наверное, и всё у архей): в отличие от гистонов эукариот, они не формируют стабильные октамерные нуклеосомы, хотя третичные структуры гистонов архей и эукариот очень похожи. Последние исследования свидетельствуют, что «нуклеосомы» архей не имеют фиксированного размера и состоят из различного числа димеров гистонов, причем плотность упаковки ДНК с помощью таких вариабельных нуклеосом напрямую связана с репрессией транскрипции связанного с ними участка ДНК. Что наиболее удивительно, длина нуклеосом архей, похоже, может быть практически неограниченной, за что исследователи назвали их гипернуклеосомами. Впрочем, с помощью биоинформатического анализа у некоторых архей удалось найти гистоны с сильно отличающейся от остальных аминокислотной последовательностью, которые, по-видимому, неспособны формировать гипернуклеосомы. Наконец, у некоторых архей есть гистоны с N- и C-концевыми хвостами, которые похожи на хвосты гистонов эукариот и тоже могут подвергаться посттрансляционным модификациям. Так каковы же они, гистоны архей, и как устроен хроматин архей? В статье мы постараемся ответить на эти вопросы.