-
1506Статья на конкурс «Био/Мол/Текст»: Изучение того, как работают бактерии, необходимо не только врачам и инфекционистам. Молекулярные биологи подглядели умение бактерий разрушать чужие ДНК и превратили ферменты рестрикции и CRISPR/Cas9 в инструменты для генной инженерии. Без них уже сложно представить себе современные биологические исследования. Но можно ли, например, укротить транспозоны бактерий, которые могут «прыгать» по ДНК с помощью фермента транспозазы? Этот фермент и сам вырезает фрагмент ДНК, и сам его вставляет в другое место. История Tn5-транспозазы началась со случайного открытия транспозона Tn5 и привела к тому, что транспозаза попала во многие лаборатории, занимающиеся секвенированием нового поколения. С ее помощью можно не просто ускорить подготовку ДНК к секвенированию, но и упростить многие исследования, в том числе и эпигеномные.
-
Бесконечная гонка вооружений между прокариотическими системами CRISPR-Cas и мобильными генетическими элементами часто приводит к тому, что последние либо обзаводятся специальными механизмами, позволяющими им нейтрализовать действие CRISPR-Cas, либо приобретают мутации, благодаря которым они уклоняются от действия защитных систем. Однако, как недавно показала группа ученых во главе с Константином Севериновым, в бактериальных популяциях сохраняется небольшое количество копий плазмид, которые являются прямыми мишенями систем CRISPR-Cas клеток-хозяев и, более того, при этом не приобретают защитных мутаций. Как же этим плазмидам удается сохраняться в бактериальной популяции и зачем это может быть полезно бактериям? Давайте разбираться.
-
Главная функция систем CRISPR/Cas у прокариот — защита от вирусов и других мобильных генетических элементов. В ходе работы CRISPR/Cas в геном бактерии или археи вставляются небольшие фрагменты генома вируса или транспозона, которые необходимы для быстрого ответа при повторной атаке такого же вируса или мобильного элемента. У эукариотических организмов за защиту от транспозонов отвечают особые малые РНК — пиРНК, причем многие из них происходят от транскриптов, считываемых с так называемых эндогенных вирусных элементов. Наш обзор посвящен этой любопытной стратегии противовирусной защиты эукариот от мобильных генетических элементов, которая по принципу своей работы удивительно похожа на систему CRISPR/Cas прокариот.
-
1647Статья на конкурс «био/мол/текст»: У большинства людей вирусы ассоциируются исключительно с вызываемыми ими заболеваниями. Действительно, вирусы являются облигатными клеточными паразитами, которые зачастую при размножении убивают организм хозяина. Между хозяином и его паразитом происходит непрерывная эволюционная «гонка вооружений». Однако в процессе эволюции некоторые вирусные гены, закрепившиеся в геномах клеточных форм жизни, включая животных, начали выполнять важные для этих организмов функции. Об одном из таких генов, играющих ключевую роль в обучении и памяти, и пойдет речь.
-
Уже давно известно, что системы CRISPR/Cas, защищающие бактерий и архей от вирусов, иногда обнаруживают в составе бактериофагов и транспозонов. Как правило, такие системы CRISPR/Cas неполные и не кодируют нуклеаз. Каково же функциональное предназначение этих «демо-версий» CRISPR/Cas? Недавно на страницах Nature американские исследователи сообщили, что бактериальные Tn7-подобные транспозоны используют свои системы CRISPR/Cas для РНК-направленной интеграции в геном. Более того, ученые предполагают, что транспозоны, которые содержат систему CRISPR/Cas и интегрируются в то место ДНК, которое комплементарно направляющей РНК, могут стать новым инструментом для редактирования генома. Наша статья посвящена этому интереснейшему открытию.
-
За последние несколько лет систему CRISPR/Cas9, казалось, попробовали применить во всех направлениях генной инженерии. С помощью этого мощнейшего инструмента редактировали геномы хозяйственно важных животных и растений, вредителей, переносчиков инфекций, модифицировали метаболические пути промышленно важных микроорганизмов. Разумеется, самые активные разработки ведутся в области применения CRISPR/Cas9 в медицине. Однако этот инструмент имеет не только прикладное значение, но и может пригодиться ученым, занимающимся фундаментальной наукой. В начале августа 2018 года Science опубликовал статью, авторы которой использовали CRISPR/Cas9 для отслеживания судьбы отдельных клеток в ходе развития организма мыши. О деталях этой замечательной работы мы сегодня и поговорим.
-
103687О том, что генная инженерия изменила мир, знают почти все, а вот каким образом — только специалисты. Об этом редко рассказывают в школе, а непонятное всегда подозрительно. Этим умело пользуются «говорящие головы», транслируя с телеэкранов альтернативную реальность. Чтобы не пугаться ГМО и не демонизировать генных инженеров, достаточно хоть немного представлять их работу и знать, что будущее их творений регулируется даже слишком строго. В первой части статьи мы вспомнили историю этой отрасли и затронули этические и коммерческие вопросы, с нею связанные. А сейчас предлагаем заглянуть в мастерскую генного инженера — пройти краткий курс кройки и шитья ДНК и познакомиться с методами, расширившими границы фундаментальных исследований, биотехнологии и медицины.
-
9358Статья на конкурс «био/мол/текст»: Что общего у вируса иммунодефицита человека, альтернативного сплайсинга, вариабельности поверхностных белков бактерий и решения проблемы недорепликации линейных хромосом? Казалось бы, странный вопрос: перечислены довольно разнородные объекты и процессы, связанные ровно настолько, насколько все явления, присущие жизни, связаны между собой. Однако есть простой и четкий ответ — обратная транскрипция. Всё это существует и работает за счет фермента, строящего ДНК на матрице РНК — обратной транскриптазы, — а значит, имеет общее происхождение. Как же так получилось? Как всё это работает и какое отношение обратная транскрипция имеет, например, к сплайсингу? Постараемся ответить на эти вопросы, а также убедимся, что обратная транскрипция оказала и оказывает неожиданно большое влияние на эволюцию эукариотического генома.
-
4489Транскрипция — это не только способ написать слова на разных языках, но и важнейшее событие в жизни генов: ведь именно благодаря транскрипции информация из ДНК переписывается в РНК, которая, в свою очередь, направляет синтез белков и выполняет множество других функций в клетке. Поэтому РНК-полимераза — молекулярная машина, осуществляющая транскрипцию, — любимый объект исследований молекулярных биологов. Понять, как работает РНК-полимераза, — значит в большой степени понять, как работают и регулируются гены, живут и взаимодействуют с окружающим миром клетки и целые организмы. Исследования РНК-полимеразы зачастую напоминают игру с молекулами, но их результаты не только помогают узнать, как устроен мир, но и служат основой для создания новых антибиотиков и других лекарств. В лаборатории молекулярной генетики микроорганизмов ИМГ РАН на площади Курчатова в Москве много лет занимаются фундаментальными исследованиями транскрипции и ее регуляции. И хотя уже сделано много захватывающих открытий, работа с каждым годом становится все интереснее.