-
Комикс на конкурс «био/мол/текст»: Казалось бы, чем наша же собственная ДНК может не угодить нашему иммунитету? Да всем — когда оказывается в цитоплазме. Потому что организму известно: генетический материал хранится внутри органелл, а цитозольная ДНК будет принадлежать бактерии, вирусу, паразиту... кому угодно, но не нам. Следовательно, ее жизненно необходимо распознать и вовремя уничтожить. Для раковых клеток вытекшая в цитоплазму ДНК — дело распространенное. Но последнее, в чем они заинтересованы, — быть замеченными иммунной системой. В этой статье пойдет речь о том, как работает внутриклеточный сенсор cGAS—STING и какую роль он играет в развитии рака.
-
Статья на конкурс «био/мол/текст»: Говорят, давным-давно наш далекий одноклеточный предок съел какую-то бактерию, да не переварил, а приручил. Так появились митохондрии, которые уже миллионы лет как часть нас. Но кто совершил такое злодейское порабощение, а кто пал его жертвой? Как выглядело то существо, которое поглотило бактерию — предка митохондрий, — и как выглядел сам предок? Кем он был и чем занимался? Попробуем расследовать события огромной давности, используя методы биоинформатики.
-
8248Статья на конкурс «био/мол/текст»: Недуг, прозванный чумой XXI века. В наши дни рак является одним из самых страшных заболеваний. В 2010 году более семи миллионов людей по всему свету умерли от рака. В Соединенных Штатах каждая третья женщина и каждый второй мужчина рано или поздно заболеют раком. По прогнозам ВОЗ, число случаев заболевания будет продолжать расти от 14 миллионов в 2012 году до 22 миллионов в следующие десятилетия. Пугающие числа, от которых невольно бросает в дрожь. Однако процесс ракового перерождения, или малигнизации, не только страшен, но и интересен, и в этой статье мы разберемся, почему же некоторые «избранные» клетки решают свернуть не туда и как это влияет на самого «изменника».
-
Статья на конкурс «био/мол/текст»: Традиционные подходы к лечению всевозможных патологий сопровождаются проникновением лекарства через физиологические отверстия и кровеносные сосуды в организм больного человека. Проникая в кровь, лекарство действует на весь организм, взаимодействуя со всеми клетками на своем пути. Однако для более эффективной работы препарата и устранения побочных эффектов необходимо как осуществить адресную доставку вещества в нужное место, так и обойти ферментные системы организма, способные превратить лекарственный препарат в его неактивную или токсическую форму.
-
Археи, несмотря на то, что не имеют оформленного ядра, по очень многим признакам гораздо больше похожи на эукариот, чем на бактерий. В частности, их геномная ДНК упакована и компактизирована с помощью гистонов, как у эукариот. Однако гистоны эти весьма своеобразны (как, наверное, и всё у архей): в отличие от гистонов эукариот, они не формируют стабильные октамерные нуклеосомы, хотя третичные структуры гистонов архей и эукариот очень похожи. Последние исследования свидетельствуют, что «нуклеосомы» архей не имеют фиксированного размера и состоят из различного числа димеров гистонов, причем плотность упаковки ДНК с помощью таких вариабельных нуклеосом напрямую связана с репрессией транскрипции связанного с ними участка ДНК. Что наиболее удивительно, длина нуклеосом архей, похоже, может быть практически неограниченной, за что исследователи назвали их гипернуклеосомами. Впрочем, с помощью биоинформатического анализа у некоторых архей удалось найти гистоны с сильно отличающейся от остальных аминокислотной последовательностью, которые, по-видимому, неспособны формировать гипернуклеосомы. Наконец, у некоторых архей есть гистоны с N- и C-концевыми хвостами, которые похожи на хвосты гистонов эукариот и тоже могут подвергаться посттрансляционным модификациям. Так каковы же они, гистоны архей, и как устроен хроматин архей? В статье мы постараемся ответить на эти вопросы.
-
Хотя ядерная ламина (белковая «сетка», играющая роль каркаса клеточного ядра) описана очень давно, ее роль в определении архитектуры хроматина долгое время оставалась неясной. Недавно на страницах журнала Nature Communications группа российских исследователей, в числе которых специалисты из Института биологии гена, МГУ, КФУ и Сколковского института науки и технологий, сообщила, что в отсутствие ядерной ламины в клетках дрозофилы линии S2 наблюдается общее повышение компактизации хроматина, сопровождающееся его отдалением от ядерной оболочки. Наша статья посвящена этому интересному открытию.
-
Внеклеточный матрикс (ВКМ) — многокомпонентная субстанция, в которую погружены все клетки нашего организма. В последнее десятилетие интерес к внеклеточному матриксу значительно возрос. Это связано с установлением его роли в старении, клеточной дифференцировке, успешной терапии рака и лечении некоторых наследственных заболеваний. Мы подготовили цикл статей, в котором расскажем об организации внеклеточного матрикса, болезнях, связанных с его патологиями, роли ВКМ в старении и подходах к корректировке возрастных изменений. В первой статье цикла мы рассказываем о компонентах и функциях внеклеточного матрикса, разбираемся, какую практическую пользу может принести его изучение, а также вкратце освещаем самые важные открытия в этой области, совершенные за последний год.
-
Статья на конкурс «био/мол/текст»: Если вы мало знаете об ауксине, то очень зря, ведь без этого растительного гормона в зеленом организме неосуществимо почти все: от закладки жилочек листа и роста плодов до приспособляемости к новым условиям среды. Еще с первых своих дней растительный эмбрион уже не обходится без ауксина. Без него о грамотном росте и развитии зеленому организму можно было бы только мечтать. Именно поэтому для меня ауксин — Великий мотиватор. Тут возникает много вопросов, которые можно свести к одному большому «КАК?!». Вот сейчас мы и попробуем ответить на него: разберемся в том, как система транспорта ауксина позволяет ему быть столь влиятельным и почему эта и без того увлекательная тема действительно важна.