-
Ферменты — лучшие катализаторы биохимических реакций, протекающих в живых организмах, — могут функционировать и вне клетки, работая на пользу человечества. Однако не для каждой реакции существуют природные белки, способные ускорить её ход. Если раньше создание новых ферментов осуществляли, оптимизируя уже существующие белки по механизму, аналогичному естественной эволюции, то теперь учёным удалось сконструировать несколько белков полностью на компьютере, проектируя их функцию «с нуля».
-
Статья на конкурс «био/мол/текст»: Выделяют ли растения метан? И если да, то как человечеству следует изменить тактику борьбы с парниковым эффектом? Дискуссия об этом разгорелась ровно десять лет назад в результате казавшегося невероятным открытия — аэробного выделения метана, что дает, по первым сделанным тогда оценкам, значительную долю всего количества этого парникового газа, поступающего в атмосферу. И только в последнее время вопрос в достаточной мере прояснился: да, аэробное выделение метана существует, но все же не вносит столь крупного вклада в общий баланс метана в земной атмосфере, как казалось вначале. В данной статье дан краткий обзор «зигзагов» понимания этого вопроса.
-
Статья на конкурс «био/мол/текст»: После окончания университета мне больше всего хотелось заниматься разработкой новых лекарств. Несмотря на то, что это сложно. И долго. И дорого. Мне очень повезло: я попала в инновационную компанию «Антерикс» (г. Пущино), и мне поручили работать над поиском антител против галектина-3. Так я познакомилась с этой неординарной биомолекулой, которая, с одной стороны, чрезвычайно важна для жизни каждого из нас, а с другой — способна натворить больших бед.
-
Археи, несмотря на то, что не имеют оформленного ядра, по очень многим признакам гораздо больше похожи на эукариот, чем на бактерий. В частности, их геномная ДНК упакована и компактизирована с помощью гистонов, как у эукариот. Однако гистоны эти весьма своеобразны (как, наверное, и всё у архей): в отличие от гистонов эукариот, они не формируют стабильные октамерные нуклеосомы, хотя третичные структуры гистонов архей и эукариот очень похожи. Последние исследования свидетельствуют, что «нуклеосомы» архей не имеют фиксированного размера и состоят из различного числа димеров гистонов, причем плотность упаковки ДНК с помощью таких вариабельных нуклеосом напрямую связана с репрессией транскрипции связанного с ними участка ДНК. Что наиболее удивительно, длина нуклеосом архей, похоже, может быть практически неограниченной, за что исследователи назвали их гипернуклеосомами. Впрочем, с помощью биоинформатического анализа у некоторых архей удалось найти гистоны с сильно отличающейся от остальных аминокислотной последовательностью, которые, по-видимому, неспособны формировать гипернуклеосомы. Наконец, у некоторых архей есть гистоны с N- и C-концевыми хвостами, которые похожи на хвосты гистонов эукариот и тоже могут подвергаться посттрансляционным модификациям. Так каковы же они, гистоны архей, и как устроен хроматин архей? В статье мы постараемся ответить на эти вопросы.
-
Несмотря на то, что химическое оружие, к счастью, практически не применяется в военных действиях, наличие средств химической защиты — важная составляющая обороноспособности и обязательное требование для чрезвычайных ситуаций. Одни из самых опасных отравляющих веществ — фосфорорганические яды, обладающие нервно-паралитическим действием, — были созданы еще до Второй мировой войны, однако эффективного противоядия от них до сих пор не существует. Группа ученых в Израиле применила подход направленной эволюции, чтобы «в пробирке» создать фермент, способный стать антидотом для двух самых токсичных ядов этой группы, — зомана и циклозарина.
-
1754Статья на конкурс «Био/Мол/Текст»: Приступая к рассмотрению чего-то нового, человек прежде всего стремится разложить это на группы. Так устроен наш мозг и так он осваивается с тем, что ему преподносит жизнь. То же — в науке: видя удивительное разнообразие вокруг себя в очередной области исследований, ученые прежде всего создавали описывающую его классификацию. Классическим примером служит система живого, представленная в виде иерархии вложенных друг в друга таксонов различного ранга: домен, царство, класс или отдел и т.д., вплоть до вида и даже более дробных групп. Ее очень удобно изображать в форме так полюбившихся биологам эволюционных деревьев. Исходно подобная система была предложена биологами-натуралистами, «классиками» систематики еще в XVIII–XIX вв. Исторический прогресс — это еще и прогресс научный: за последние десятилетия объекты и методы исследований изменились очень сильно. Сильно изменилось и само научное знание, и его методы. Извечная задача систематизации и группировки остается актуальной — только применять ее приходится к данным в новом формате... и, порой, чрезвычайно большим. Чтобы не захлебнуться в информационном потоке, очень важно освоить новые методы для работы с данными. Здесь в качестве важного, но непростого примера мы рассмотрим кластерный анализ.
-
Статья на конкурс «био/мол/текст»: В октябре 2016 года группа российских биоинформатиков выиграла этап престижных научных соревнований ENCODE-DREAM, приуроченный к семинару по применению методов анализа данных и машинного обучения в биологии, проходящему в рамках международной конференции ISCB-RECOMB по регуляторной и системной геномике. Предложенный российской командой алгоритм для предсказания мест связывания белков, регулирующих экспрессию генов, был признан лучшим. Однако история победы биоинформатической команды под руководством Ивана Кулаковского — это больше, чем просто «история успеха» (хотя и это дорогого стоит); эта история о том, как на наших глазах формируется и начинает работать принципиально новая модель организации науки.
-
Термофорез — движение молекул в градиенте температур — давно используется в химии и физике для изучения коллоидных растворов. Добавив инфракрасный лазер к флуоресцентному микроскопу, разработчики метода добились локальных изменений температуры и возможности тут же регистрировать изменения сигнала от молекул. Метод окрестили микроскопическим термофорезом, и в 2010 году он дебютировал в биологии. Метод позволяет делать точные количественные оценки самых разных бимолекулярных взаимодействий (например, белок–лиганд, белок–белок, белок–нуклеиновая кислота и т.д.). Измерения можно проводить непосредственно в биологических жидкостях, что приближает условия к естественным, исключает необходимость иммобилизации молекул и просто экономит время. Всё это делает микроскопический термофорез привлекательным методом как для фундаментальных исследований, так и для биомедицинских приложений.
-
Статья на конкурс «био/мол/текст»: С развитием современных технологий идея изучать клетку на уровне отдельных молекул получила новые технические возможности. Современные методы микроскопии позволяют увидеть, как выглядят клетки, их органеллы (световая микроскопия) и даже отдельные молекулы внутри фиксированных клеток (электронная микроскопия). Использование флуоресцентных меток позволяет увидеть отдельные молекулы в живых клетках с помощью световой микроскопии, а использование сверхчувствительных видеокамер и компьютерных программ для обработки видеозаписей дает возможность судить о функциях конкретных молекул.
-
Статья на конкурс «био/мол/текст»: Кажется, они были всегда... Сотни миллионов лет назад они наблюдали за появлением первых динозавров, а затем и за их гибелью. Они жили рядом с первыми млекопитающими и были свидетелями их расцвета. Сейчас они обитают везде — в воздухе, в воде и в почве, на улице и в наших домах. Они наблюдают за нами уже очень давно — с момента появления наших предков — так, может, пора узнать, что прячется за их внешней простотой? Пора приоткрыть завесу над тайной зрительного аппарата насекомых.