https://extendedlab.ru/?utm_source=utm_source%3Dbiomolecula.ru&utm_medium=utm_medium%3Dbanner&utm_campaign=utm_campaign%3Dbiomolecula&utm_content=utm_content%3Dperehod_ot_biomolekula&utm_term=utm_term%3Dbiomolecula
Подписаться
withwonderfullaugh@mail.ru

withwonderfullaugh@mail.ru 0,0

  • «Биохимия» — «Биомолекуле»
    «Био/мол/текст»-2021/2022
    Своя работа
    Трансляция: как и зачем ингибировать биосинтез белка в собственных клетках?
    Обзор
    Биология Биомолекулы Процессы Структурная биология Цитология
    Трансляция: как и зачем ингибировать биосинтез белка в собственных клетках?
    3670 1,6
    Статья на конкурс «Био/Мол/Текст»: Биосинтез белка (трансляция) — ключевой процесс клеточного метаболизма, в ходе которого специальные молекулярные машины — рибосомы, — раскодируя последовательность нуклеотидов в матричной РНК, производят полипептидную цепь. Как и к любым другим биомолекулам, к компонентам трансляционного аппарата можно подобрать ингибиторы. Подавление трансляции в эукариотических клетках с помощью малых молекул в последние годы всё чаще применяется при терапии различных заболеваний (в том числе генетических). Казалось бы, для чего ингибировать процесс, который обеспечивает клетку строительным материалом, ферментами, регуляторами и прочими необходимыми для жизни компонентами? Дело в том, что часто при раковой трансформации или вирусной инфекции рибосомы начинают «подыгрывать» врагу, смещая трансляцию в сторону «нежелательных» мРНК. Например, вирусы, чтобы качнуть чашу весов в свою сторону, могут использовать множество интересных механизмов для модификации клеточной трансляции. Таким образом, лекарства, которые подавляют биосинтез белка, могут намного сильнее затормозить рост клеток, вышедших из-под контроля, нежели «законопослушных». Это их свойство и используется при терапии.
    0 Данил Владимиров 29 октября 2021
  • Бедные родственники, или незаслуженно забытые нуклеазы транспозонов Новость
    CRISPR/CAS Биология Генетика
    Бедные родственники, или незаслуженно забытые нуклеазы транспозонов
    631 0,3
    Известная каждому биологу система CRISPR-Cas9, нашедшая широчайшее применение в области редактирования геномов, произошла от нуклеаз IscB, которые кодируют транспозоны группы IS200/IS605. Хотя этот факт был установлен довольно давно по меркам молекулярной биологии — в 2015 году — функции IscB так и остались неизученными. До недавнего времени было неизвестно даже, способны ли они разрезать ДНК-мишень при участии гидовой РНК подобно их потомкам — нуклеазам Cas9. Недавнее исследование американских ученых наконец позволило пролить свет не только на свойства IscB и других нуклеаз, кодируемых транспозонами, но и детально разобраться в их эволюции и происхождении Cas9.
    0 Елизавета Минина 25 октября 2021
  • Генная терапия
    Лентивирусные векторы: как они стали лучшими векторами для терапии <em>ex vivo</em>
    Обзор
    CAR-T Вирусология Генетика Генная инженерия Генная терапия Медицина
    Лентивирусные векторы: как они стали лучшими векторами для терапии ex vivo
    5932 2,6
    Возникшая в конце XX века пандемия ВИЧ-инфекции и сопутствующее распространение синдрома приобретенного иммунодефицита (СПИДа) послужили толчком к масштабным исследованиям вызывающего эти патологии вируса. В этих исследованиях раскрыли детали организации генома, репликации и жизненного цикла вируса иммунодефицита человека 1, проложив тем самым путь для создания на его основе лентивирусных векторных систем. Такие системы использовались в создании самой первой одобренной CAR-T-терапии — лечения, подарившего надежду безнадежным больным, и ставшего одним из самых громких прорывов в онкогематологии за последние годы. А помогли тут во многом некоторые уникальные свойства лентивирусов, которые, как выяснилось, могут нести не только смерть, но и жизнь.
    0 Юрий Тарасов 22 октября 2021
  • Эпигенетика
    Наследование и эпигеном
    Обзор
    Биология Эпигенетика
    Наследование и эпигеном
    3664 1,6
    В продолжение спецпроекта по эпигенетике мы расскажем о наследовании эпигенетической информации — как она передается между клетками одного организма при делении и как ее получают наши потомки. (Спойлер: да, это может повлиять на то, какими они будут!) Речь пойдет о метилировании ДНК; гистоновых и негистоновых белках; активном и неактивном хроматине; роли во всем этом малых РНК; и даже о наследовании позиций нуклеосом на ДНК. Напоследок оставим важнейший вопрос — можно ли на самом деле клонировать мамонта?
    0 Наталья Кочанова 15 октября 2021
  • Проще, чем вы думали, — за что вручили Нобелевскую премию по химии (2021) Новость
    Биомолекулы Итоги года Синтетическая биология
    Проще, чем вы думали, — за что вручили Нобелевскую премию по химии (2021)
    1276 0,6
    Биологи немного удивились тому, что Нобелевской премией по химии наконец-то наградили двух химиков, сделавших химическое открытие. Последние премии по этому направлению выдавались за открытия на грани химии и биологии, а иногда и за этой гранью. Нынешние лауреаты, Беньямин Лист и Дэвид Макмиллан, разработали способ катализировать превращения органических соединений проще, эффективнее и экологичнее, чем это делали до них. В 2000 г. Лист и Дэвид предложили использовать для этого маленькие органические молекулы, которые заменяли собой целые белки — ферменты. Идея оказалась очень удачной, и теперь ее уже используют на многих производствах. В голосовании на сайте Нобелевской премии 52% посетителей признались, что не знали о применении органокатализа в фармацевтической промышленности. Пришло время рассказать о том, как отмеченное Нобелевкой открытие меняет медицину и делает органическую химию более независимой от биологии.
    0 Александр Хазанов 07 октября 2021
  • «Био/мол/текст»-2021/2022
    Свободная тема
    Темные лошадки в мире человеческого микробиома — археи
    Обзор
    Биология Микробиология
    Темные лошадки в мире человеческого микробиома — археи
    3670 1,5
    Статья на конкурс «Био/Мол/Текст»: Первое, за что взялись микробиологи, заполучив в свои руки молекулярные методы, — это, конечно же, исследование всего разнообразия микробов, населяющих человеческое тело. До этого ученые были ограничены прихотливостью большинства микроорганизмов, многие из которых просто не желали расти в условиях, которые мы могли для них создать. После того как биологи стали обнаруживать не принадлежащие к известным видам последовательности ДНК в образцах, постепенно стало ясно, что лишь 1% всех микроорганизмов из пробы удается вырастить в лабораторных условиях [1]. Но новые методы, не привязанные к получению культур, позволили глубже изучить внутренний мир человека: так мы обнаружили там необычных обитателей, которых прежде ученые встречали лишь в экстремальных природных условиях — архей. В данной статье мы попробуем пролить свет на эту незаслуженно забытую часть нашей микробиоты.
    2 Анна Дукат 07 сентября 2021
  • «Био/мол/текст»-2021/2022
    Свободная тема
    Ванильные мечты о пластике
    Новость
    Биодеградация Биология Микробиология Экология
    Ванильные мечты о пластике
    1287 0,6
    Статья на конкурс «Био/Мол/Текст»: Проблема накопления ксенобиотиков чрезвычайно актуальна в наши дни, и, хотя нам давно известно о технологиях их деградации, такие способы в основном сосредоточены на переработке и получении большего количества того же вещества. Авторы статьи 2021 года предложили новый, экономически выгодный способ борьбы с вездесущими пластиковыми отходами, о котором и пойдет речь в данной статье.
    0 Алексей Дукат 27 августа 2021
  • Танец маленьких хромосом Новость
    Биология Микробиология
    Танец маленьких хромосом
    494 0,2
    Механизм симметричного деления бактериальных клеток и разделения по дочерним клеткам копий генома изучен довольно подробно и даже успел попасть на страницы учебников. Вместе с тем существует ряд бактерий с явной асимметрией клеток. Как же они делятся? Недавно на страницах журнала Current Biology вышла статья, описывающая деление и распределение хромосом по дочерним клеткам у Bdellovibrio bacteriovorus — хищных бактерий, обладающих явной клеточной асимметрией. Более того, результатом деления одной бактерии этого вида являются не две клетки, а больше. Как происходит деление этой во всех смыслах удивительной бактерии? Давайте разбираться.
    0 Елизавета Минина 16 августа 2021
  • Ультрасовременные методы
    Одноклеточное секвенирование: разделяй, изучай и властвуй
    Обзор
    Секвенирование ДНК
    Одноклеточное секвенирование: разделяй, изучай и властвуй
    4754 2,1
    Современные методы полногеномного секвенирования позволяют считывать миллиарды последовательностей нуклеиновых кислот (НК) — ДНК или РНК — за считанные часы. Человечество вплотную подобралось к пониманию механизмов реализации генетического материала в живых системах, и новые технологии одноклеточного секвенирования с возможностью визуализации пространственного положения нуклеиновых кислот внутри или вне клетки, похоже, стали еще одним шагом к этой цели.
    0 Артем Недолужко 13 августа 2021
  • Фальшивые мотивы в ДНК: как геномные варианты меняют поведение транскрипционных факторов Новость
    GWAS «Сухая» биология Биология Генетика ДНК Наука из первых рук Своя работа
    Фальшивые мотивы в ДНК: как геномные варианты меняют поведение транскрипционных факторов
    1138 0,5
    Работа клетки подобна работе оркестра, только вместо музыки она производит белки и РНК. Для правильного функционирования всей системы каждый ген должен «вступать» в нужный момент, скоординировано с другими генами, и давать столько продукта, сколько потребуется. Это значит, что транскрипция каждого гена должна происходить в определенное время и с определенной интенсивностью. Дирижерами процесса выступают специальные белки — факторы транскрипции. Партитура при этом записана в самой ДНК: партию определяют регуляторные последовательности, с которыми транскрипционный фактор связывается и в результате усиливает или ослабляет транскрипцию соответствующих генов. Замены в таких последовательностях могут приводить к изменению силы связывания и, как следствие, фальши в транскрипции: неверной или не вовремя сыгранной партии конкретного гена. Современные биологи активно пытаются решить вопрос о том, как устроены эти последовательности для каждого транскрипционного фактора и какие мутации в них будут влиять на связывание с белком. Одним из подходов к расшифровке клеточной партитуры является изучение аллель-специфичного связывания: когда варианты регуляторной последовательности, унаследованные от матери и от отца, различаются, можно изучать, с каким из них транскрипционный фактор связывается лучше. Несмотря на прозрачную постановку задачи, на пути к ее решению возникает ряд проблем. Мы придумали, как их преодолеть, и обнаружили сотни тысяч событий аллель-специфичного связывания, попутно показав их вклад в предрасположенность ко многим заболеваниям. Работа недавно опубликована в журнале Nature Communications.
    1 Дарья Быкова 09 августа 2021