-
Термофорез — движение молекул в градиенте температур — давно используется в химии и физике для изучения коллоидных растворов. Добавив инфракрасный лазер к флуоресцентному микроскопу, разработчики метода добились локальных изменений температуры и возможности тут же регистрировать изменения сигнала от молекул. Метод окрестили микроскопическим термофорезом, и в 2010 году он дебютировал в биологии. Метод позволяет делать точные количественные оценки самых разных бимолекулярных взаимодействий (например, белок–лиганд, белок–белок, белок–нуклеиновая кислота и т.д.). Измерения можно проводить непосредственно в биологических жидкостях, что приближает условия к естественным, исключает необходимость иммобилизации молекул и просто экономит время. Всё это делает микроскопический термофорез привлекательным методом как для фундаментальных исследований, так и для биомедицинских приложений.
-
Статья на конкурс «био/мол/текст»: С развитием современных технологий идея изучать клетку на уровне отдельных молекул получила новые технические возможности. Современные методы микроскопии позволяют увидеть, как выглядят клетки, их органеллы (световая микроскопия) и даже отдельные молекулы внутри фиксированных клеток (электронная микроскопия). Использование флуоресцентных меток позволяет увидеть отдельные молекулы в живых клетках с помощью световой микроскопии, а использование сверхчувствительных видеокамер и компьютерных программ для обработки видеозаписей дает возможность судить о функциях конкретных молекул.
-
Статья на конкурс «био/мол/текст»: Кажется, они были всегда... Сотни миллионов лет назад они наблюдали за появлением первых динозавров, а затем и за их гибелью. Они жили рядом с первыми млекопитающими и были свидетелями их расцвета. Сейчас они обитают везде — в воздухе, в воде и в почве, на улице и в наших домах. Они наблюдают за нами уже очень давно — с момента появления наших предков — так, может, пора узнать, что прячется за их внешней простотой? Пора приоткрыть завесу над тайной зрительного аппарата насекомых.
-
1782Статья на конкурс «Био/Мол/Текст»: История холеры — противоречивая и сложная, и кажется уже пережитком прошлого. Однако она все еще никуда не исчезла: ежегодно отмечают до 4 миллионов случаев заболевания. Разберемся, как холера появилась и повлияла на весь мир, и какие ошибки и убеждения мешали победить эту страшную болезнь.
-
Ученые выяснили, почему регуляция экспрессии генов c помощью микроРНК так распространена и консервативна, хотя лишь слегка снижает количество продуктов большинства генов-мишеней. Оказывается, микроРНК помогают уменьшить экспрессионный «шум» — то есть вариабельность, возникающую при реализации генетической информации случайно.
-
1565Статья на конкурс «био/мол/текст»: Шизофрения — настоящая «живая легенда» на той «Аллее Звезд», которую могли бы составить людские недуги. Пожалуй, любому из нас она, как «двойное послание», кажется и по-своему давно знакомой, и по-своему же до сих пор непонятной. Нивелируя маленькие человеческие слабости и сомнения, «большая наука» давно взялась за шизофрению не только со всей особенностью ее психиатрического лечения, но и глубиной, затаенной на уровне генов. Всплеск аналогичного интереса ученых сегодня вызывают и те генетические механизмы, которые скрываются за целым комплексом девиаций, классифицируемых как метаболический синдром. И вот где раскрывается настоящее «исследовательское чутье»: ведь и такие вроде чужеродные напасти, тем не менее, вполне способны пролить свет друг на друга! Например, при сравнительных исследованиях, которые позволяет такой относительно новый метод биомедицины, как полногеномный поиск ассоциаций (GWAS). Именно поэтому и данная статья, помимо «болезненного дуэта», посвящается одному из вероятных прорывов в рамках таких исследований за авторством наших соотечественников: шаг за шагом, «снип за снипом» — генная подоплека метаболического синдрома «выходит из тени».
-
Статья на конкурс «био/мол/текст»: В статье рассказывается о механизме действия пептида 2A из вируса ящура, при вставке генетической последовательности которого между последовательностями двух других белков, в любой эукариотической клетке произойдет разделение синтезируемой белковой цепочки на две — прямо во время синтеза полипептида внутри рибосомы. Это свойство 2A применяется в биотехнологии для получения нескольких белков с одной РНК. В наших экспериментах показано, что в таком «расщеплении» принимают участие факторы терминации трансляции.
-
Лаборатория компьютерного дизайна материалов МФТИ под руководством известного российского ученого Артема Ромаевича Оганова занимается предсказанием кристаллических структур. Ученые, обладая уникальным инструментом для теоретического анализа вещества, работают над колоссальным множеством проектов. Они ищут новые полезные материалы, исследуют содержимое земных недр и других планет, улучшают лекарства и решают задачи по предсказанию структуры белков. В лаборатории трудится большой интернациональный коллектив, часть направлений работы которого описана в этой статье.
-
2445Статья на конкурс «Био/Мол/Текст»: Мозг считают самым сложным органом в человеческом теле. А иногда даже самым сложным объектом во всей Вселенной! Оснований для этого немало: нейронов в нашем мозге немногим меньше 100 миллиардов. Продолжая астрономическую метафору, заметим: это число сопоставимо с количеством звезд в нашей Галактике. А это — все наблюдаемые нами в телескопы и многие, многие другие. Но настоящий «математический взрыв мозга» это все же число контактов между нейронами — оно оценивается как 10 в 15 степени! Тут уж никаких звезд не хватит для сравнения. Ломать, безусловно, не то же, что строить, однако в случае мозга медленное неуклонное разрушение — нейродегенерация — также может быть очень сложным, разносторонним и даже в текущую эпоху пост-рока и пост-генома далеко не до конца понятным процессом. Мы рассмотрим это на примере «королевы нейродегенераций» — болезни Альцгеймера. На это нейродегенеративное расстройство приходится больше заболевших, чем на все остальные вместе взятые: этой болезни посвящены тысячи статей, на ее исследования израсходованы огромные деньги... однако механизмы в основе болезни Альцгеймера до конца так и не установлены. Что уж и говорить о блистательно отсутствующих методах лечения. Почему так? Во многом в силу сочетания различных патологических процессов и «молекулярных игроков», из числа которых на первый план выходят бета-амилоидный пептид Aβ, белок тау и связывающие их сложные взаимоотношения.