https://biolabmix.ru/catalog/rna-transcription-mrna/?erid=LdtCKWnpq
Подписаться
Биология

Цитология

Цитология

Биология пытается во всех деталях разобраться, как работают сложнейшие системы — живые организмы. Очевидно, для этого необходимо понимать, как работают их отдельные части, включая базовые составляющие. Клетки — элементарные структурные единицы (почти всех) живых организмов. Как они устроены и функционируют, изучает цитология. С момента появления знания о том, что клетки существуют, до момента, когда стало понятно, что живые организмы из них состоят, прошло более 150 лет. Однако с тех пор накопление знаний о клетках, их структуре и протекающих в них процессах стремительно ускоряется.

В статьях этой рубрики читатель узнает про клеточное «самоедство», как разные геномы уживаются в одном ядре, как «обломки» белков влияют на биологические процессы, про половую жизнь хроматина, что движет (в прямом смысле) бактериями, о «черной метке» белков, о клеточном рецепторе щелочи, о том, зачем клетки стареют и как «подглядели» за рибосомой.

Сортировка

Формат статьи

Период публикации

  • Структурная геномика меняет курс Новость
    GPCR Рецепторы Структурная биология Цитология
    Структурная геномика меняет курс
    536 0,3
    Американская программа по структурным исследованиям белков (PSI), за десятилетие своей работы давшая миру более 5000 пространственных структур биологических молекул, для следующего этапа своих изысканий меняет курс. Дело в том, что из этих пяти тысяч лишь 128 белков — это белки человека, а большинство же лежит в базах данных мёртвым грузом, практически не вызывая интереса биологов. Следующая пятилетка программы PSI пройдёт под знамёнами человеческих объектов, и в первую очередь — рецепторов, действующих через активацию G-белков.
    5 Антон Чугунов 01 сентября 2010
  • Рибосома за работой Новость
    Биомолекулы Биотехнологии Процессы Цитология
    Рибосома за работой
    4143 2,1
    Большинство биохимических и биофизических экспериментов позволяют измерить какую-либо величину лишь «в среднем по палате», не достигая чувствительности, необходимой для регистрации событий на уровне отдельных молекул. Однако в последнее время всё большее распространение получают методики наблюдения за молекулами по отдельности. Недавно подобная технология была использована для «подглядывания» за работой отдельной рибосомы в реальном времени, наглядно выстраивая в цепочку события, происходящие при синтезе белковой молекулы.
    2 Антон Чугунов 21 апреля 2010
  • «Нестареющая» Нобелевская премия: в 2009 году отмечены работы по теломерам и теломеразе Новость
    ДНК Нобелевские лауреаты Процессы Структурная биология Хроматин Цитология
    «Нестареющая» Нобелевская премия: в 2009 году отмечены работы по теломерам и теломеразе
    13168 6,4
    В 2009 году Нобелевская премия по физиологии и медицине вручена трём американским учёным, разрешившим важную биологическую проблему: как хромосомы при делении клетки копируются полностью, без того, чтобы ДНК на их кончиках укорачивалась? В результате их исследований стало известно, что «защитным колпачком» для хромосом служат особым образом устроенные окончания ДНК — теломеры, достройкой которых занимается специальный фермент — теломераза.
    9 Антон Чугунов 05 октября 2009
  • Нано-pH-метр Новость
    ДНК Диагностика Нано(био)технологии Цитология
    Нано-pH-метр
    1184 0,6
    За последнее десятилетие на волне повсеместного развития нанотехнологий исследователи создали массу прототипов «нанороботов» — это наноскопические моторы и шестерни, регуляторы и переключатели, работающие пока что в искусственно созданных условиях. Одним из перспективных материалов, пригодных для изготовления наномашин, является... ДНК. Индийские учёные использовали эту молекулу для создания сенсора кислотности среды, меняющего цвет флуоресценции в зависимости от pH раствора. Наиболее примечательным в разработке является то, что это первый пример автономной работы наноустройства не в искусственной среде, а внутри живой клетки.
    0 Антон Чугунов 22 мая 2009
  • «Вездесущий убиквитин» возвращается Новость
    Биомолекулы Процессы Цитология
    «Вездесущий убиквитин» возвращается
    3324 1,7
    Одним из самых интересных феноменов в молекулярной биологии является убиквитиновая сигнализация в клетке. Элементарная единица этого пути — небольшой белок убиквитин (76 аминокислотных остатков, 8,5 кДа), открытый в 1975 году. Год за годом исследования убиквитин-опосредованных событий в живой клетке приносят всё новые и новые неожиданности. В заметке «Вездесущий убиквитин» мы давали прогноз, что вскоре снова услышим об этом белкé. Приятно заметить, что это предсказание сбылось. Правда, простоты в общую картину эти открытия не добавили — приходится говорить, скорее, о путанице в ранее стройной теории «казнить–помиловать».
    3 Петр Старокадомский 13 мая 2009
  • Чтение молекулярных отпечатков Новость
    ДНК РНК Секвенирование ДНК Цитология
    Чтение молекулярных отпечатков
    537 0,3
    Сочетание рибосомного профилирования и параллельного высокопроизводительного секвенирования нового поколения породило метод, с помощью которого учёные могут наблюдать трансляцию тысяч мРНК одновременно.
    0 Павел Натальин 04 мая 2009
  • Вездесущий убиквитин Новость
    Биомолекулы Процессы Цитология
    Вездесущий убиквитин
    8486 4,3
    Убиквитин — один из самых распространённых белков в природе. Он синтезируется во всех эукариотических клетках — от дрожжей до человека, а у человека — от клеток кожи до нейронов. Пика известности этот белок достиг в 1980-х, когда обнаружилось, что убиквитинилирование является «поцелуем смерти» для белков. Действительно, одна из форм убиквитина является маркером деградации выполнивших свою функцию или «поломанных» белков. Потом было обнаружено и второе, противоположное (!), его свойство — убиквитинилирование белков ряда сигнальных путей регулирует их активность и, в результате, опосредует передачу сигнала в ядро. Наконец, недавно было открыто, что функции убиквитина распространяются и на регулирование аппарата ядра: показана его роль в регулировании транскрипции генов путём модификации РНК-полимеразного комплекса.
    9 Петр Старокадомский 07 февраля 2009
  • Эволюция генетического кода Новость
    Биомолекулы Генетика Цитология
    Эволюция генетического кода
    3979 2,0
    Генетический код — это «алфавит», лежащий в основе функционирования любой живой системы на Земле. Ранее считавшийся неизменным и универсальным для всех организмов, генетический код, на самом деле, подвержен эволюционному процессу, в результате которого могут возникать различные аномалии — например, варианты кода, специфичные для отдельных биологических видов или даже субклеточных органелл (митохондрий). Одна из таких аномалий, по-видимому, представляет собой древнюю адаптацию, защищающую от окислительного стресса, вызванного переходом к аэробному дыханию, и приводящую к высокой концентрации метионина в митохондриях.
    0 Павел Натальин 30 октября 2008
  • Умелые руки: как доставить полипептид через мембрану? Новость
    Биомембраны Структурная биология Цитология
    Умелые руки: как доставить полипептид через мембрану?
    913 0,5
    Более трети всех синтезируемых клеткой белков секретируется либо встраивается в мембрану, то есть — подвергается трансмембранному переносу. Этот процесс осуществляет специальный транслокационный комплекс, состоящий у бактерий из интегрального мембранного канала SecY и «мотора» SecA, который с помощью энергии АТФ «проталкивает» белóк через узкий канал SecY. До недавнего времени этот процесс был изучен только в самом общем виде (хотя было известно, например, в каких случаях белóк будет «вытолкнут» из клетки, а в каких — останется в мембране). Последние исследования пролили свет на молекулярный механизм взаимодействия SecY–SecA и то, как они осуществляют транспорт белков.
    0 Антон Чугунов 18 октября 2008
  • Польза или вред? Как холестерол влияет на структуру рецепторов в нервных клетках Новость
    Атеросклероз Нейробиология Рецепторы Цитология
    Польза или вред? Как холестерол влияет на структуру рецепторов в нервных клетках
    585 -0,2
    Многие наслышаны о вреде холестерина, содержащегося в продуктах, которые мы потребляем. Так ли уж вредна эта молекула для нашего организма? Холестерол (он же холестерин) и его производные являются важными компонентами клеточных мембран, особенно если речь заходит о нервной ткани. Недавно было опубликовано исследование, в котором обнаружена необычная функция холестерола. Оказывается, он способен связываться с холинергическими рецепторами, влияя при этом на их пространственную структуру. Кроме того, были обнаружены специфические сайты связывания холестерола. Это позволяет по-новому взглянуть на его роль в функционировании нервной ткани.
    4 Антон Полянский 02 октября 2008